Get Answers to all your Questions

header-bg qa

The function f\left ( x \right )= \log \left ( x+\sqrt{x^{2}+1} \right ) is

  • Option 1)

    an odd function

  • Option 2)

    a periodic function

  • Option 3)

    neither an even nor an odd function

  • Option 4)

    an even function.

 

Answers (2)

best_answer

As we learnt in

Odd Function -

f(-x)= -f(x)

- wherein

Symmetric about origin

 

 f(x)=log(x+\sqrt{1+x^{2}})

f(x)=log(1-x+\sqrt{1+x^{2}})

f(x)+f(-x)=log(\sqrt{1+x^{2}}+x)+log(\sqrt{1+x^{2}}-x)

=log(1+x^{2}-x^{2})=log1=0

\therefore    It is odd function.

Correct option is 1.

 


Option 1)

an odd function

This is the correct option.

Option 2)

a periodic function

This is an incorrect option.

Option 3)

neither an even nor an odd function

This is an incorrect option.

Option 4)

an even function.

This is an incorrect option.

Posted by

Aadil

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE