Get Answers to all your Questions

header-bg qa

If (2, 3, 5) is one end of a diameter of the sphere x^{2}+y^{2}+z^{2}-6x-12y-2z+20=0, then the coordinates of the other end of the diameter are

  • Option 1)

    (4, 3, 5)

  • Option 2)

    (4, 3, –3)

  • Option 3)

    (4, 9, –3)

  • Option 4)

    (4, –3, 3)

 

Answers (1)

best_answer

As we learnt in 

Section Formula -

1)    Internal Division

\left ( \frac{mx_{2}+nx_{1}}{m+n}, \frac{my_{2}+ny_{1}}{m+n}, \frac{mz_{2}+nz_{1}}{m+n} \right )

2)    External Division

\left ( \frac{mx_{2}-nx_{1}}{m-n}, \frac{my_{2}-ny_{1}}{m-n}, \frac{mz_{2}-nz_{1}}{m-n} \right )

3)    Mid Point Formula

\left ( \frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2} \right )

- wherein

 

 Coordinate of centre of sphere= (3,6,1)

Let other end be (x,y,z)

\frac{x+2}{2}= 3,\frac{y+3}{2}= 6,\frac{z+5}{2}= 1

x= 4, y= 9, z=-3


Option 1)

(4, 3, 5)

Incorrect Option

 

Option 2)

(4, 3, –3)

Incorrect Option

 

Option 3)

(4, 9, –3)

Correct Option

 

Option 4)

(4, –3, 3)

Incorrect Option

 

Posted by

Plabita

View full answer

Crack JEE Main with "AI Coach"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
jee_ads