Get Answers to all your Questions

header-bg qa

If a normal at \mathrm{P\left(a t^2, 2 a t\right)} to \mathrm{ y^2=4 a x} intersects the curve at Q and if the line segment PQ subtends a right angle at the vertex, then

Option: 1

\mathrm{t^2=2}


Option: 2

\mathrm{t^2=1}


Option: 3

\mathrm{t=1}


Option: 4

\mathrm{t^2+1=0}


Answers (1)

best_answer

The normal at \mathrm{P\left(a t^2, 2 a t\right)} is

\mathrm{ \begin{aligned} & y-2 a t=-t\left(x-a t^2\right) \\ & y+t x=2 a t+a t^3 \end{aligned} }\mathrm{..................(1)}

Let it cut the parabola at Q.

As PQ subtends \mathrm{90^{\circ}} at the vertex, by homogeneity method, the combined equation of OP, OQ is

\mathrm{ y^2-4 a x\left(\frac{y+t x}{2 a t+a t^3}\right)=0 }

Or \mathrm{y^2\left(2 a t+a t^3\right)=4 a x(y+t x)}          \mathrm{..................(2)}

As \mathrm{O P \perp O Q,} the condition is that

the sum of coefficients of \mathrm{x^2 } and \mathrm{y^2}in (2) is zero

Or \mathrm{\left(2 a t+a t^3\right)-4 a t=0}

Or \mathrm{a t^3-2 a t=0}

As \mathrm{\quad t \neq 0 \Rightarrow t^2=2}

Posted by

Sayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE