Get Answers to all your Questions

header-bg qa

If \mathrm{a, b, c} are rational and the tangent to the parabola \mathrm{y^2=4 k x ~at P(p, a)} and \mathrm{Q(q, b)} meet at \mathrm{R(r, c)}, then the equation \mathrm{a x^2+b x-2 c=0} has
 

Option: 1

 imaginary roots
 


Option: 2

 real and equal roots
 


Option: 3

 rational roots
 


Option: 4

 irrational roots


Answers (1)

best_answer

 Given parabola is \mathrm{y^2=4 k x}\quad \quad \quad \quad\dots(i)

Let \mathrm{P \equiv\left(k t_1^2, 2 k t_1\right), Q \equiv\left(k t_2^2, 2 k t_2\right)}

Since tangents at P and Q meet at R
\mathrm{\therefore \quad R \equiv\left[k t_1 t_2, k\left(t_1+t_2\right)\right] }

Given \mathrm{2 k t_1=a, 2 k t_2=b, k\left(t_1+t_2\right)=c}

\mathrm{\Rightarrow a+b-2 c=0 }
\mathrm{\Rightarrow } 1 is a root of equation \mathrm{a x^2+b x-2 c=0. }
But 1 is a rational number and a, b, c are rational.
\therefore Both roots of equation \mathrm{a x^2+b x-2 c=0 }  are rational.

Posted by

Divya Prakash Singh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE