Get Answers to all your Questions

header-bg qa

If at t=0, a travelling wave pulse on a string is described by the function y=\frac{6}{x^2+3} . What will be the wave function representing the pulse at time t, if the pulse is propagating along positive x-axis with speed 4m/s?

Option: 1

y=\frac{6}{(x+4 t)^2+3}


Option: 2

y=\frac{6}{(x-4 t)^2+3}


Option: 3

y=\frac{6}{(x- t)^2}


Option: 4

y=\frac{6}{(x- t)^2+13}


Answers (1)

best_answer

y(x, 0)=\frac{6}{x^2+3}

If v is the speed of the wave, then

\\ y(x, t)=y(x-v t, 0) \\ y(x, t)=\frac{6}{(x-v t)^2+3}\\ Here, \quad v=4 \mathrm{~m} / \mathrm{s}.\\ y(x, t)=\frac{6}{(x-4 t)^2+3}

Posted by

sudhir.kumar

View full answer