Get Answers to all your Questions

header-bg qa

If f^{\prime}(c) exists and non-zero then \mathrm{\lim _{h \rightarrow 0} \frac{f(c+h)+f(c-h)-2 f(c)}{h}}  is equal to

Option: 1

f^{\prime}(c)


Option: 2

0


Option: 3

2 f^{\prime}(c)


Option: 4

none of these


Answers (1)

best_answer

\mathrm{\lim _{h \rightarrow 0} \frac{f(c+h)+f(c-h)-2 f(c)}{h}}
 

\mathrm{=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}+\frac{f(c-h)-f(c)}{h} }
\mathrm{=f^{\prime}(c)-\lim _{h \rightarrow 0} \frac{f(c-h)-f(c)}{-h} }
\mathrm{=f^{\prime}(c)-f^{\prime}(c)=0}

Posted by

Sayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE