# If $x=\sum_{n=0}^{\infty }(-1)^{n}\tan ^{2n}\theta \: \: and\: \: y=\sum_{n=0}^{\infty }\cos ^{2n}\theta ,$ for $0<\theta < \frac{\pi }{4},$ then Option: 1 Option: 2 Option: 3 Option: 4

$x=\sum_{n=0}^{\infty}(-1)^{n} \tan ^{2 n} \theta=1-\tan^2\theta+\tan^4\theta..........$

$y=\sum_{n=0}^{\infty} \cos ^{2 n} \theta=1+\cos^2\theta+\cos^4\theta......$

Use $\text S_{\infty}=\frac{1}{1-r}$

${x=\frac{1}{1+\tan ^{2} \alpha}=\cos ^{2} \theta} \\ {y=\frac{1}{1-\cos ^{2} \theta}=\frac{1}{\sin ^{2} \theta}}$

$\Rightarrow (1-x)= \sin ^{2} \theta$

$\Rightarrow y(1-x)=1$

Correct Option (3)

## Most Viewed Questions

### Preparation Products

##### Knockout JEE Main (Six Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 9999/- ₹ 8499/-
##### Knockout JEE Main (Nine Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 13999/- ₹ 12499/-
##### Test Series JEE Main 2024

Chapter/Subject/Full Mock Tests for JEE Main, Personalized Performance Report, Weakness Sheet, Complete Answer Key,.

₹ 7999/- ₹ 4999/-
##### JEE Main Rank Booster 2023

Booster and Kadha Video Lectures, Unlimited Full Mock Test, Adaptive Time Table, Faculty Support.

₹ 9999/- ₹ 6999/-