Get Answers to all your Questions

header-bg qa

If from any point \mathrm{P\left(x_1, y_1\right)} on the hyperbola \mathrm{\frac{x^2}{a^2}-\frac{y^2}{b^2}=-1}, tangents are drawn to the hyperbola \mathrm{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,} then the corresponding chord of contact touches the another branch of the hyperbola \mathrm{\frac{x^2}{a^2}-\frac{y^2}{b^2}=-1} at the point

Option: 1

\left(x_1,-y_1\right)


Option: 2

\left(-x_1, y_1\right)


Option: 3

\left(x_1, y_1\right)


Option: 4

\left(-x_1,-y_1\right)


Answers (1)

best_answer

Chord of contact of \frac{x^2}{a^2}-\frac{y^2}{b^2}=1w.r.t. point P\left(x_1, y_1\right) is is

\frac{x x_1}{a^2}-\frac{y y_1}{b^2}=1                                                                ...(1)

Eq. (1) can be written as \frac{x\left(-x_1\right)}{a^2}-\frac{y\left(-y_1\right)}{b^2}=-1,

which is tangent to the hyperbola

\frac{x^2}{a^2}-\frac{y^2}{b^2}=-1$ at point $\left(-x_1,-y_1\right).

Obviously, point \left(x_1, y_1\right) and \left(-x_1,-y_1\right) lie on the different branches of hyperbola \frac{x^2}{a^2}-\frac{y^2}{b^2}=-1.

Posted by

Ritika Harsh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE