Get Answers to all your Questions

header-bg qa

if f(3)=\frac{a sin x+b cosx}{ c sinx +dcos x}is monotonically increasing, then

Option: 1

ab\geq bc


Option: 2

ab < bc


Option: 3

ab\leq bc


Option: 4

ab>bc


Answers (1)

 

Quotient Rule of differentiation -

\frac{d}{dx}\:\:\frac{f(x)}{g(x)}=\frac{g(x).f'(x)-f(x).g'(x)}{[g(x)]^{2}}


\frac{d}{dx}\:\:\frac{u}{v}=\frac{v.\frac{du}{dx}-u.\frac{dv}{dx}}{v^{2}}

-

 

 

Condition for increasing functions -

For increasing function tangents drawn at any point on it makes an acute slope with positive x-axis.

M_{T}=tan\theta\geq 0

\therefore \:\:\:\frac{dy}{dx}=f'(x)\geq 0\:\:for\:\:x\epsilon (a,b)

- wherein

Where f(x)  is continuous and differentiable for (a,b)

 

 

Here f(x)=\frac{a\: \sin \: x+b\: \cos x}{c\: \sin \: x+d\: \cos \: x} is monotonically increasing

then f'(x)\geq 0

Now f'(x)

=\frac{(c\sin x+d\cos x)(a\cos x-b\sin x)-(a\sin x+b\cos x)(c\cos x-d\sin x)}{(c\sin x+d\cos x)^{2}}

ac\sin \: x\cos x-bc\: \sin ^{2}x+ad\cos ^{2}x-bd\sin x\cos x

=\frac{-ac\sin x\cos x+ad\sin ^{2}x-bc\cos ^{2}x+bd\sin x\cos x}{(c\sin x+d\cos x)^{2}}

=\frac{ad(\sin ^{2}x+\cos ^{2}x)-bc(\sin^{2}x+\cos ^{2}x)}{(c\sin x+d\cos x)^{2}}

=\frac{ad-bc}{(c\sin x+d\cos x)^{2}}

Here f'(x)\geq 0\: \forall\: x\in R

\Rightarrow ad-bc\geq 0

ad\geq bc

Posted by

Sumit Saini

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE