Get Answers to all your Questions

header-bg qa

If \mathrm{f(x)= \begin{cases}x+a, & x \leq 0 \\ |x-4|, & x>0\end{cases}} and \mathrm{g(x)= \begin{cases}x+1 & , x<0 \\ (x-4)^{2}+b & , \quad x \geqslant 0\end{cases}} are continuous on \mathrm{R}, then\mathrm{(g\! \circ\! f)\, (2)+(f\! \circ\! g)\, (-2)} is equal to:

Option: 1

-10


Option: 2

10


Option: 3

8


Option: 4

-8


Answers (1)

best_answer

\mathrm{f(x)=\left\{\begin{array}{l} x+a ; x \leq 0 \\ |x-4| ; x>0 \end{array}\right.}

\mathrm{g(x)= \begin{cases}x+1 & x<0 \\ (x-4)^{2}+b & x \geq 0\end{cases}}

For continuity \mathrm{a=4} and \mathrm{b=-15}

\mathrm{g(f(2))+f(g(-2)) }\\

\mathrm{=g(2)+f(-1)=-8}

Hence correct option is 4

Posted by

Rishi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE