Get Answers to all your Questions

header-bg qa

If \mathrm{f(x)=\left\{\begin{array}{c}x+2, x \in(1,2] \\ p x^2-q, x \in[0,1)\end{array}\right. and f(1)=3}, then the possible value of the pair (p, q) for which f(x) cannot be continuous at x=1 is

 

 

Option: 1

 (3,0)
 


Option: 2

 (1,-2)
 


Option: 3

 (5,2)
 


Option: 4

(1,1)


Answers (1)

best_answer

 f(x) is continuous at x=1, if
\mathrm{\begin{aligned} & \lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0} f(1-h)=f(1)=3 \\ & \lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0}(1+h+2)=3 \\ & \lim _{h \rightarrow 0} f(1-h)=\lim _{h \rightarrow 0}\left(p(1-h)^2-q\right)=p-q \\ & \therefore f(x) \text { is not continuous at } x=1 \text { if } p-q \neq 3 \end{aligned} }
 

Posted by

vishal kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE