Get Answers to all your Questions

header-bg qa

If  \mathrm{\mathrm{S}\, \, and\, \, \mathrm{S}^{\prime}} are the foci of an ellipse and  \mathrm{ \mathrm{P}} any point on the curve,\mathrm{ \tan \left(\frac{\text { PSS }^{\prime}}{2}\right) \tan \left(\frac{\text { PS'S }^{\prime}}{2}\right)=\frac{1-\mathrm{e}}{1+\mathrm{e}}}. The locus of the center of the circle inscribed in the triangle \mathrm{ PSS^{\prime}}is :

Option: 1

 Straight line
 


Option: 2

 Ellipse
 


Option: 3

 Parabola
 


Option: 4

Circle


Answers (1)

best_answer

Let \mathrm{\angle \mathrm{PSS}^{\prime}=\alpha and \angle \mathrm{PS}^{\prime} \mathrm{S}=\beta }
\mathrm{\therefore \quad \mathrm{SS}^{\prime}=2 \mathrm{ae} }
By sine rule in \mathrm{ \triangle \mathrm{PSS}^{\prime} } then
\mathrm{\begin{array}{ll} & \frac{\mathrm{SP}}{\sin \beta}=\frac{\mathrm{S}^{\prime} \mathrm{P}}{\sin \alpha}=\frac{\mathrm{SS}^{\prime}}{\sin \{\pi-(\alpha+\beta)\}} \\ \Rightarrow \quad & \frac{\mathrm{SP}}{\sin \beta}=\frac{\mathrm{S}^{\prime} \mathrm{P}}{\sin \alpha}=\frac{\mathrm{SS}^{\prime}}{\sin (\alpha+\beta)} \\ \text { or } & \frac{\mathrm{SP}+\mathrm{S}^{\prime} \mathrm{P}}{\sin \beta+\sin \alpha}=\frac{\mathrm{SS}^{\prime}}{\sin (\alpha+\beta)} \\ \text { or } & \frac{2 \mathrm{a}}{\sin \beta+\sin \alpha}=\frac{2 \mathrm{ae}}{\sin (\alpha+\beta)} \end{array} }

\mathrm{\begin{array}{ll} \Rightarrow \quad \frac{1}{\mathrm{e}}=\frac{2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)}{2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha+\beta}{2}\right)} \\ \Rightarrow \quad \frac{1}{\mathrm{e}}=\frac{\cos \left(\frac{\alpha-\beta}{2}\right)}{\cos \left(\frac{\alpha+\beta}{2}\right)} \\ \Rightarrow \quad \frac{1-\mathrm{e}}{1+\mathrm{e}}=\frac{\cos \left(\frac{\alpha-\beta}{2}\right)-\cos \left(\frac{\alpha+\beta}{2}\right)}{\cos \left(\frac{\alpha-\beta}{2}\right)+\cos \left(\frac{\alpha+\beta}{2}\right)} \\ \Rightarrow \quad \frac{1-\mathrm{e}}{1+\mathrm{e}}=\tan \alpha / 2 \tan \beta / 2 \\ \text { or } \quad \tan \left(\frac{\mathrm{PSS}^{\prime}}{2}\right) \tan \left(\frac{\mathrm{PS} \mathrm{S}^{\prime}}{2}\right)=\frac{1-\mathrm{e}}{1+\mathrm{e}} \end{array} }.....................(1)
The centre of the circle inscribed in \mathrm{\triangle \mathrm{PSS}^{\prime} } will lie on the bisectors of angles \mathrm{\alpha } and \mathrm{\beta } whose equations are
\mathrm{\begin{aligned} & y=\tan \frac{\beta}{2}(x+a e) \\ & y=\tan \left(\pi-\frac{\alpha}{2}\right)(x-a e) \end{aligned} }
and
\mathrm{y=-\tan \frac{\alpha}{2}(x-a e) }
or
By multiplying we get
\mathrm{\begin{aligned} & \mathrm{y}^2=-\tan \frac{\alpha}{2} \tan \frac{\beta}{2}\left(\mathrm{x}^2-\mathrm{a}^2 \mathrm{e}^2\right) \\ & \mathrm{y}^2=-\frac{1-\mathrm{e}}{1+\mathrm{e}}\left(\mathrm{x}^2-\mathrm{a}^2 \mathrm{e}^2\right) \\ & \mathrm{y}^2+\mathrm{x}^2\left(\frac{1-\mathrm{e}}{1+\mathrm{e}}\right)=\mathrm{a}^2 \mathrm{e}^2\left(\frac{1-\mathrm{e}}{1+\mathrm{e}}\right) \\ & \frac{\mathrm{x}^2}{\mathrm{a}^2 \mathrm{e}^2}+\frac{\mathrm{y}^2}{\mathrm{a}^2 \mathrm{e}^2\left(\frac{1-\mathrm{e}}{1+\mathrm{e}}\right)}= \end{aligned} }(From equation (1))
or
or which is an ellipse.

Posted by

jitender.kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE