Get Answers to all your Questions

header-bg qa

If x=\frac{1-t^2}{1+t^2} \text { and } y=\frac{2 t}{1+t^2} \text {, then } \frac{d y}{d x}=

Option: 1

-y/x


Option: 2

y/x


Option: 3

-x/y


Option: 4

x/y


Answers (1)

best_answer

x=\frac{1-t^2}{1+t^2} \text { and } y=\frac{2 t}{1+t^2}

Put t=\tan \theta in both the equations, we get x=\frac{1-\tan ^2 \theta}{1+\tan ^2 \theta}=\cos 2 \theta and y=\frac{2 \tan \theta}{1+\tan ^2 \theta}=\sin 2 \theta

Differentiating both the equations, we get 

\frac{d x}{d \theta}=-2 \sin 2 \theta and  \frac{d y}{d \theta}=2 \cos 2 \theta .

Therefore 

\frac{d y}{d x}=-\frac{\cos 2 \theta}{\sin 2 \theta}=-\frac{x}{y}

 

Posted by

Deependra Verma

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE