Get Answers to all your Questions

header-bg qa

If \mathrm{y= y\left ( x \right )}\\ is the solution of the dieffrential equation \mathrm {2x^{2}\frac{dy}{dx}-2xy+3y^{2}=0}\\ such that \mathrm{y\left ( e \right )= \frac{e}{3}}\\, then \mathrm{y\left ( 1 \right )} is equal to

Option: 1

\mathrm{\frac{1}{3}}


Option: 2

\mathrm{\frac{2}{3}}


Option: 3

\mathrm{\frac{3}{2}}


Option: 4

\mathrm{3}


Answers (1)

best_answer

\mathrm{2x^{2}\frac{dy}{dx}-2xy+3y^{2}= 0}\\

\mathrm{\frac{1}{y^{2}}\frac{dy}{dx}-\frac{1}{xy}+\frac{3}{2x^{2}}=0\\ \hspace{0.5cm}Let \hspace{0.2cm} \frac{1}{y}=t}\\

\mathrm{-\frac{1}{y^{2}}\frac{dy}{dx}=\frac{dt}{dx}}\\

\mathrm{-\frac{dt}{dx}-\frac{1}{x}t+\frac{3}{2x^{2}}=0}\\

\mathrm{\frac{dt}{dx}+\frac{1}{x}t=\frac{3}{2x^{2}}}\\

If  \mathrm{=e^{\int \frac{1}{x}dx}=x}\\

\mathrm{x\cdot t=\int x\cdot \frac{3}{2x^{2}}dx}\\

\mathrm{x\cdot t=\frac{3}{2}\left ( \ln x \right )+c}\\

\mathrm{\frac{x}{y}=\frac{3}{2}\ln x+c}\\

\mathrm{x=e,y=\frac{e}{3}}\\

\mathrm{\frac{e}{e/3}=\frac{3}{2}\cdot 1+c}\\

\mathrm{\Rightarrow c=\frac{3}{2}}\\

\mathrm{\frac{x}{y}=\frac{3}{2}\ln x+\frac{3}{2}}\\

\mathrm{\Rightarrow x=1}\\

\mathrm{\Rightarrow \frac{1}{y}=\frac{2}{3}}\\

\mathrm{y=\frac{2}{3}}\\                           ...........\mathrm{\because y=y(x)}\\

                                                     \mathrm{y=y(1)}

Hence the correct answer is option (2)

Posted by

Gunjita

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE