Get Answers to all your Questions

header-bg qa

If \mathrm{y=y(x)} is the solution of the differential equation \mathrm{\left(1+e^{2 x}\right) \frac{d y}{d x}+2\left(1+y^{2}\right) e^{x}=0}  and  \mathrm{y(0)=0} , then \mathrm{6\left(y^{\prime}(0)+\left(y\left(\log _{e} \sqrt{3}\right)\right)^{2}\right)} is equal to

Option: 1

2


Option: 2

-2


Option: 3

-4


Option: 4

-1


Answers (1)

best_answer

\mathrm{\left(1+e^{2 x}\right) \frac{d y}{d x}+2\left(1+y^{2}\right) e^{x}=0} \\

\mathrm{\left(1+e^{2 x}\right) d y=-2\left(1+y^{2}\right) e^{x} d x} \\

\mathrm{\frac{d y}{1+y^{2}}=-\frac{2 e^{x} d x}{1+e^{2 x}}}

\mathrm{Let \,\,e^{x}=t \Rightarrow e^{x} d x=d t}

\mathrm{\frac{d y}{1+y^{2}}=-2 \frac{d t}{1+t^{2}}}

\mathrm{Integrating}

\mathrm{\tan ^{-1}(y)=-2 \tan ^{-1}(t)+c }\\

\mathrm{\tan ^{-1}(y)=-2 \tan ^{-1}\left(e^{x}\right)+c}

\mathrm{\text { As } y(0) =0} \\

\mathrm{0 =-2 \cdot \frac{\pi}{4}+c \Rightarrow c=\frac{\pi}{2}} \\

\mathrm{\therefore \tan ^{-1} y =-2 \tan ^{-1}\left(e^{x}\right)+\frac{\pi}{2}}          ...........(1)

From given equation putting \mathrm{x=0,y=0}

\mathrm{\left(1+e^{0}\right) \cdot y^{\prime}(0)+2(1+0) \cdot e^{0}=0} \\

\mathrm{2 \cdot y^{\prime}(0)+2=0} \\

\mathrm{y^{\prime}(0)=-1}

\mathrm{Putting\: x=\log (\sqrt{3}) \,\,in \,\,(i)}

\mathrm{\tan ^{-1} y =-2 \tan ^{-1}(\sqrt{3})+\frac{\pi}{2}} \\

\mathrm{\tan ^{-1} y =-\frac{2 \pi}{3}+\frac{\pi}{2}} \\

\mathrm{\tan ^{-1} y =-\frac{\pi}{6} }\\

\mathrm{y =-\frac{1}{\sqrt{3}}}

\mathrm{\therefore 6\left(y^{\prime}(0)+(y(\log \sqrt{3}))^{2}\right)} \\

\mathrm{= 6\left(-1+\frac{1}{3}\right)} \\

\mathrm{= 6\left(-\frac{2}{3}\right)} \\

\mathrm{=-4}

Hence answer is option 3

Posted by

Rishabh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE