Get Answers to all your Questions

header-bg qa

If radii of director circles of  \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 and   \frac{x^{2}}{a^{2}}-\frac{y^{2}}{(b)^{2}}=1are 2r and r respectively and ee and eh be the eccentricities of the ellipse and the hyperbola respectively then

Option: 1

2e_{h}^{2}-e_{e}^{2}=6


Option: 2

e_{e}^{2}-4e_{h}^{2}=6


Option: 3

4e_{h}^{2}-e_{e}^{2}=6


Option: 4

none of these


Answers (1)

best_answer

 

Eccentricity -

e= \sqrt{1-\frac{b^{2}}{a^{2}}}

- wherein

For the ellipse  

\frac{x^{2}}{a^{2}}+ \frac {y^{2}}{b^{2}}= 1

 

 

Equation of director circles of ellipse and hyperbola are respectively.

x^{2} + y^{2} = a^{2} + b^{2} \; and \; x^{2}+ y^{2} = a^{2}– b^{2}

a^{2} + b^{2} = 4r^{2} ......(i)

a^{2} + b^{2} = r^{2} ......(ii)

a^{2} =\frac{5r^{2}}{2},\;\; b^{2} =\frac{3r^{2}}{2}

e_{e}^{2}=1-\frac{b^{2}}{a^{2}}

\Rightarrow e_{e}^{2}=1-\frac{3r^{2}}{2}\times\frac{2}{5r^{2}}=1-\frac{3}{5}=\frac{2}{5}

e_{h}^{2}=1+\frac{b^{2}}{a^{2}}

e_{h}^{2}=1+\frac{3}{5}=\frac{8}{5}

so 4e_{h}^{2}-e_{e}^{2}=4 \times\frac{8}{5}-\frac{2}{5}=\frac{30}{5}=6

 

Posted by

Riya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE