Get Answers to all your Questions

header-bg qa

If \mathrm{n} represents the actual number of reflections in a converted galvanometer of resistance \mathrm{G} and shunt resistance \mathrm{S}. Then the total current \mathrm{I} when its figure of merit is \mathrm{K} will be :

Option: 1

\mathrm{\frac{KS}{\left (S+G \right )}}


Option: 2

\mathrm{\frac{\left ( G+S \right )}{nKS}}


Option: 3

\mathrm{\frac{nKS}{G+S}}


Option: 4

\mathrm{\frac{nK\left ( G+S \right )}{S}}


Answers (1)

best_answer

Figure of merit \mathrm{=K=\frac{I_{g}}{\theta}}

When the current through Galvanomter is \mathrm{I_{g}} then the reflection is on

\mathrm{K=\frac{I_{g}}{n} ; I_{g}=n K }\\

\mathrm{\left(I-I_{g}\right) S=I_{g} G} \\

\mathrm{I=Ig\frac{\left ( G+S \right )}{S}} \\

\mathrm{I_{g}=\frac{I(S)}{(G+S)}} \\

\mathrm{\frac{I \left (S \right )}{(G+S)}=n K} \\

\Rightarrow \mathrm{I=\frac{n K(G+S)}{S}}

Hence the correct answer is option 4.

Posted by

Gunjita

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE