Get Answers to all your Questions

header-bg qa

If \mathrm{m\: and \: n} respectively are the number of local maximum and local minimum points of the function  \mathrm{f(x)=\int_{0}^{x^{2}} \frac{t^{2}-5 t+4}{2+e^{t}} d t} , then the ordered pair \mathrm{\left ( m,n \right )} is 

Option: 1

\mathrm{\left ( 3,2 \right )}


Option: 2

\mathrm{\left ( 2,3 \right )}


Option: 3

\mathrm{\left ( 2,2 \right )}


Option: 4

\mathrm{\left ( 3,4 \right )}


Answers (1)

best_answer

\mathrm{f^{\prime}(a) =\frac{2 x-\left(\left(x^{2}\right)^{2}-5 x^{2}+4\right)}{2+e^{x^{2}}}} \\

         \mathrm{=\frac{2 x\left[\left(x^{2}-1\right)\left(x^{2}-4\right)\right]}{2+e^{x^{2}}}}

         \mathrm{=\frac{2(x+2)(x+1) x(x-1)(x-2)}{2+e^{x^{2}}}}

So  \mathrm{\{-2,0,2\}}  are poits of Minima \mathrm{\Rightarrow n=3 }

and  \mathrm{\{-1,1\}} are poits is Maxixma \mathrm{\Rightarrow m=2 }

\mathrm{(m,n)= (2,3) }

Hence the correct answer is option 2

Posted by

Deependra Verma

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE