Get Answers to all your Questions

header-bg qa

If the angle made by the tangent at the point \mathrm{\left ( x_{0},y_{0} \right )} on the curve \mathrm{x=12\left ( t+\sin t\cos t \right )}, \mathrm{y=12\left ( 1+\sin t \right )^{2},0< t< \frac{\pi}{2}}, with the positive x-axis is \mathrm{\frac{\pi}{3}}, then \mathrm{y_{0}} is equal to :

Option: 1

6\left ( 3+2\sqrt{2} \right )


Option: 2

3\left ( 7+4\sqrt{3} \right )


Option: 3

27


Option: 4

48


Answers (1)

best_answer

Given,

Curve  \mathrm{x=12\left ( t+\sin t\cos t \right )}

          \mathrm{y=12\left ( 1+\sin t\right )^{2}}

Now   \mathrm{\frac{dy}{dx}=\frac{dy/dt}{dx/dt}}

\mathrm{ \tan (\pi / 3)=\frac{\frac{d}{d t}\left(12(1+\sin t)^{2}\right)}{\frac{d}{d t}(12(t+\sin t \cos t))} \\ }\\

\mathrm{\sqrt{3}=\frac{12 \times 2(1+\sin t) \cos t}{12(1+\cos 2 t)}} \\

\mathrm{\sqrt{3}=\frac{2(1+\sin t) \cos t}{2 \cos ^{2} t}}

\mathrm{\sqrt{3}=\frac{1+\sin t}{\cos t}=\frac{(\cos t / 2+\sin t / 2)^{2}}{\left(\cos ^{2} t/2-\sin ^{2}t / 2\right)}}\\

\mathrm{\sqrt{3}=\tan (t/ 2+\pi / 4)} \\

\mathrm{\pi / 3=\frac{t}{2}+\frac{\pi}{4} \Rightarrow \frac{t}{2}=\frac{\pi}{12} \Rightarrow t=\pi / 6}

Now putting  \mathrm{t=\frac{\pi}{6}}  in  \mathrm{y=12\left ( 1+\sin t \right )^{2}} as  \mathrm{\left ( x_{0},y_{0} \right )}  lie on curve

So    \mathrm{y_{0}=12\left ( 1+\sin \frac{\pi}{6} \right )^{2}}

              \mathrm{=12\left ( \frac{3}{2} \right )^{2}=27}

Hence the correct answer is option 3

Posted by

Gaurav

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE