Get Answers to all your Questions

header-bg qa

If the normal at P to the hyperbola \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 meets the transverse axis in G and the conjugate axis in \mathrm{g} and \mathrm{\mathrm{CF}} be perpendicular to the normal from the centre, then \mathrm{\mathrm{PF} \cdot \mathrm{PG}+\mathrm{PF} \cdot \mathrm{Pg}=}

Option: 1

a^2-b^2


Option: 2

b^2-a^2


Option: 3

a^2+b^2


Option: 4

2\left(a^2+b^2\right)


Answers (1)

best_answer

Let \mathrm{P(a \sec \phi, b \tan \phi) } be any point on the hyperbola \mathrm{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 } then equation of tangent and normal at \mathrm{\mathrm{P} } are
\mathrm{\frac{\mathrm{x}}{\mathrm{a}} \sec \phi-\frac{\mathrm{y}}{\mathrm{b}} \tan \phi=1 }..............(1)
and \mathrm{\quad a x \cos \phi+b y \cot \phi=a^2+b^2 }............(2)
Putting y=0 & x=0 in (2), we get the points G and \mathrm{\mathrm{g} } as
\mathrm{\begin{aligned} & \left(\frac{\mathrm{a}^2+\mathrm{b}^2}{\mathrm{a}} \sec \phi, 0\right),\left(0, \frac{\mathrm{a}^2+\mathrm{b}^2}{\mathrm{~b}} \tan \phi\right) \\ \therefore \quad(\mathrm{PG})^2 & =\left(\mathrm{a} \sec \phi-\frac{\mathrm{a}^2+\mathrm{b}^2}{\mathrm{a}} \sec \phi\right)^2+(\mathrm{b} \tan \phi-0)^2 \\ = & \frac{\mathrm{b}^4}{\mathrm{a}^2} \sec ^2 \phi+\mathrm{b}^2 \tan ^2 \phi \\ = & \frac{\mathrm{b}^2}{\mathrm{a}^2}\left(\mathrm{~b}^2 \sec ^2 \phi+\mathrm{a}^2 \tan ^2 \phi\right) \end{aligned} }.....(3)

and
\mathrm{\begin{aligned} & (\operatorname{Pg})^2=(\mathrm{a} \sec \phi-0)^2+\left(\mathrm{b} \tan \phi-\frac{\mathrm{a}^2+\mathrm{b}^2}{\mathrm{~b}} \tan \phi\right)^2 \\ & =\mathrm{a}^2 \sec ^2 \phi+\frac{\mathrm{a}^4}{\mathrm{~b}^2} \tan ^2 \phi \\ & =\frac{\mathrm{a}^2}{\mathrm{~b}^2}\left(\mathrm{~b}^2 \sec ^2 \phi+\mathrm{a}^2 \tan ^2 \phi\right) \end{aligned} }.......(4)
Now \mathrm{ \mathrm{PF} } is clearly equal to \mathrm{\mathrm{CL} }, i.e.., perpendicular from \mathrm{\mathrm{C}(0,0) } on (1);
\mathrm{\begin{aligned} & \mathrm{PF}=\mathrm{CL}=\frac{1}{\sqrt{\left(\frac{\sec ^2 \phi}{\mathrm{a}^2}+\frac{\tan ^2 \phi}{\mathrm{b}^2}\right)}} \\ & =\frac{a b}{\sqrt{\left(b^2 \sec ^2 \phi+a^2 \tan ^2 \phi\right)}}=\frac{a b}{\left(\frac{a}{b}\right) P G} \\ & \text { (from (3)) } \\ & \therefore \quad \text { PG.PF }=b^2 \\ & \mathrm{PF}=\frac{\mathrm{ab}}{\sqrt{\left(\mathrm{b}^2 \sec ^2 \phi+\mathrm{a}^2 \tan ^2 \phi\right)}}=\frac{\mathrm{ab}}{\frac{\mathrm{b}}{\mathrm{a}} \cdot \mathrm{Pg}} \\ & \text { (from 4) } \\ & \mathrm{Pg} \cdot \mathrm{PF}=\mathrm{a}^2 \\ & \end{aligned} }

Posted by

Riya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE