Get Answers to all your Questions

header-bg qa

If the system of linear equations
\begin{gathered} 2 x+y-z=3 \\ x-y-z=\alpha \\ 3 x+3 y+\beta z=3 \end{gathered}
has infinitely many solution, then \alpha+\beta-\alpha \beta is equal to_________.
 

Answers (1)

best_answer

For infinitely many solutions :
\Delta = 0= \Delta _{1}= \Delta _{2}= \Delta _{3}
\Delta = 0\Rightarrow \begin{vmatrix} 2 & 1 & -1\\ 1& -1 & -1\\ 3& 3 & \beta \end{vmatrix}= 0
\Rightarrow 2\left ( -\beta +3 \right )-1\left ( \beta +3 \right )-1\left ( 3+3 \right )= 0
\Rightarrow -3\beta -3= 0\Rightarrow \beta = -1
\Delta_{1} = 0\Rightarrow \begin{vmatrix} 3 & 1 & -1\\ \alpha & -1 & -1\\ 3& 3 & -1 \end{vmatrix}= 0
\Rightarrow 3\left ( 1+3 \right )-1\left ( -\alpha +3 \right )-1\left ( 3\alpha +3 \right )= 0
\Rightarrow 12+\alpha -3-3\alpha -3= 0
\Rightarrow 2\alpha= 6\Rightarrow \alpha = 3
\alpha = 3,\beta = -1
\alpha +\beta -\alpha \beta -3-1+3= 5

Posted by

Kuldeep Maurya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE