Get Answers to all your Questions

header-bg qa

If the value of Avogadro number is 6.023 \times 10^{23} \mathrm{~mol}^{-1}  and the value of Boltzmann constant is  1.380 \times 10^{-23} \mathrm{Jk}^{-1}  then the numbers of significant digits in the calculated value of the universal gas constant is -

Option: 1

6


Option: 2

3


Option: 3

4


Option: 4

2


Answers (1)

best_answer

Universal gas constant, \mathrm{R=K N_A} 

where, k= Boltzmann constant

\mathrm{N_A}= Avogadro's numbers

\mathrm{R=1.380 \times 10^{-23} \times 6.023 \times 10^{23} \mathrm{~J} / \mathrm{kmol}}

\mathrm{=8.31174 \approx 8.312}

\mathrm{\approx 8.312}
Since, k and \mathrm{N_A}  both have four significant figures, so the value of R is also rounded off up to 4 significant figures.

Posted by

Sayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE