Get Answers to all your Questions

header-bg qa

If two straight lines whose direction cosines are given by the relations l+\mathrm{m}-\mathrm{n}=0,3 l^{2}+\mathrm{m}^{2}+\mathrm{cn} l=0 are parallel, then the positive value of \mathrm{c} is :

Option: 1

6


Option: 2

4


Option: 3

3


Option: 4

2


Answers (1)

best_answer

\mathrm{l+m=n } ..........(1)     \mathrm{\quad 3 l^{2}+m^{2}+c n l=0 }    ..............(2)

\mathrm{Substituting \; n=1+m \; in\; eqn (2)}

\mathrm{\Rightarrow \quad 3 l^{2}+m^{2}+c(l+m) l=0} \\

\mathrm{\Rightarrow \quad(3+c) l^{2}+c m l+m^{2}=0} \\

\mathrm{\Rightarrow \quad(3+c)\left(\frac{l}{m}\right)^{2}+c\left(\frac{l}{m}\right)+1=0}

Since lines are parallel \Rightarrow this quadratic will have repeated roots \Rightarrow \mathrm{D= 0}

\mathrm{\Rightarrow c^{2}-4(3+c)=0} \\

\mathrm{\Rightarrow c^{2}-4 c-12=0 \Rightarrow c=6 \text { or } c=-2}

So positive value of \mathrm{ c=6}

Hence the correct answer is option 1.

Posted by

Ritika Kankaria

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE