Get Answers to all your Questions

header-bg qa

In a series LR circuit \mathrm{X_{L}=R} and power factor of the circuit is \mathrm{P_{1} .} When capacitor with capacitance \mathrm{C} such that \mathrm{X_{L}=X_{C}} is put in series, the power factor becomes \mathrm{P_{2}. } The ratio \mathrm{\frac{P_{1}}{P_{2}}}  is :

Option: 1

\frac{1}{2}


Option: 2

\frac{1}{\sqrt{2}}


Option: 3

\frac{\sqrt{3}}{\sqrt{2}}


Option: 4

2: 1


Answers (1)

best_answer

\mathrm{Power\: factor=\cos \phi =\frac{R}{Z}}

\mathrm{\cos \phi=\frac{R}{\sqrt{R^2+\left|X_L-x_C\right|^2}} }

\mathrm{P_1=\cos \phi_1=\frac{R}{\sqrt{R^2+\left(X_L\right)^2}} }

\mathrm{P_1=\frac{R}{\sqrt{R^2+R^2}}=\frac{1}{\sqrt{2}} }

\mathrm{P_2=\cos \phi_2=\frac{R}{\sqrt{R^2+\left(x_L-x_C\right)^2}} }

\mathrm{P_2=\frac{R}{R}=1 }

\mathrm{P_1=\frac{1}{\sqrt{2}}}

Hence (2) is correct option.

Posted by

shivangi.bhatnagar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE