Get Answers to all your Questions

header-bg qa

In \DeltaABC let L, M, N be the feet of the altitudes. Then 

\sin \angle MLN + \sin \angle LMN + \sin \angle MNL equals to

Option: 1

4 \sin A \sin B \sin C


Option: 2

4 \cos A \cos B \cos C


Option: 3

\tan A + \tan B + \tan C


Option: 4

none 


Answers (1)

best_answer

As we have learnt in

 

Trigonometric Ratios of Functions -

\sin \Theta = \frac{Opp}{Hyp}

\cos \Theta = \frac{Base}{Hyp}

\tan \Theta = \frac{Opp}{Base}

- wherein

Trigonometric Ratios of Functions

 

 

Using properties of pedal triangle,

                we have         \sin \angle MLN + \sin \angle LMN + \sin \angle MNL

 MLN = 180^{o} - 2A

LMN = 180 \degree - 2B \\\\ \angle MNL = 180 \degree - 2 C

                Hence the required sum    

                                = \sin2A + \sin2B + \sin2C = 4 \sin A \sin B \sin C

 

Posted by

mansi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Similar Questions