Get Answers to all your Questions

header-bg qa

In an amplitude modulation, a modulating signal having amplitude of X V is superimposed with a carrier signal of amplitude Y V in first case. Then, in second case, the same modulating signal is superimposed with different carrier signal of amplitude 2Y V. The ratio of modulation index in the two cases respectively will be :

Option: 1

2: 1


Option: 2

1: 2


Option: 3

4: 1


Option: 4

1: 1


Answers (1)

best_answer

\begin{aligned} & \mu=\text { ratio of modulation index } \\ & \mathrm{A}_{\mathrm{m}}=\mathrm{X}, \mathrm{A}_{\mathrm{c}}=\mathrm{y} \\ & \mathrm{A}_{\mathrm{m}}=\mathrm{X}, \mathrm{A}_{\mathrm{c}}=2 \mathrm{y} \\ & \mu_1=\frac{\mathrm{A}_{\mathrm{m}}}{\mathrm{A}_{\mathrm{c}}}=\frac{\mathrm{x}}{\mathrm{y}} \, \, \, \, \, \, \, \, \, \, ......(1)\\ & \mu_2=\frac{\mathrm{A}_{\mathrm{m}}}{\mathrm{A}_{\mathrm{c}}}=\frac{\mathrm{x}}{2 \mathrm{y}}\, \, \, \, \, \, \, \, \, \, \, ....(2) \\ & \text { Hence } \frac{\mathrm{eq}^{\mathrm{n}}(1)}{\mathrm{eq}^{\mathrm{n}}(2)}=\frac{\mu_1}{\mu_2}=\frac{\mathrm{x} / \mathrm{y}}{\mathrm{x} / 2 \mathrm{y}}=\frac{2 \mathrm{y}}{\mathrm{y}} \\ & \frac{\mu_1}{\mu_2}=\frac{2}{1} \end{aligned}

Posted by

Anam Khan

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE