Get Answers to all your Questions

header-bg qa

In an elementary reaction, \mathrm{X(g)+2 Y(g) \rightarrow Z(g)}. the initial pressure of X and Y are \mathrm{P_{X}=0.2 \mathrm{~atm}} and \mathrm{P_{Y}=0.3 \mathrm{~atm}} respectively. After time t, if the presurre of Z is observed 0.05 atm then find the value of \mathrm{\frac{r_{i} \text { (initial rate of } r x^{n} \text { ) }}{r_{t} \text { (Rate of } r x^{n} \text { after time\: t) }}}.

Option: 1

1


Option: 2

2


Option: 3

3


Option: 4

4


Answers (1)

best_answer

                     \mathrm{X(g)+2 Y(g) \rightarrow Z(g)}
\mathrm{t= 0}           0.2            0.3                 1
\mathrm{t= t}            0.15           0.2              0.05

\mathrm{r_{i}=K\left(P_{X}\right)^{1}\left(P_{Y}\right)^{2} \quad }\left \{ \text{elementary}\,rX^{n} \right \}
\mathrm{r_{i}= K\times 0.2\times \left ( 0.3 \right )^{2}= 0.018\, K}
\mathrm{r_{t}= K\times 0.15\times \left ( 0.2 \right )^{2}= 0.0060\, K}

\mathrm{\frac{r_{i}}{r_{t}}= 3}
         




      

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE