Get Answers to all your Questions

header-bg qa

In the hydrogen spectrum,\mathrm{ \lambda} be the wavelength of first transition line of Lyman series. The wavelength difference will be \mathrm{ "a\lambda^{\text {" }}} between the wavelength of \mathrm{ 3^{\text {rd }}} transition line of Paschen series and that of \mathrm{2^{\text {nd }}} transition line of Balmer series where \mathrm{a=} _____________.

Option: 1

5


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

First transition line of lyman series

\mathrm{\frac{1}{\lambda} =R\left(\frac{1}{1^2}-\frac{1}{2^2}\right) }

\mathrm{\lambda =\frac{4 }{3 R} \rightarrow \text { (1) }}
Third transition line of paschen

\mathrm{\frac{1}{\lambda_1} =R\left(\frac{1}{3^2}-\frac{1}{6^{2}}\right) }

\mathrm{\frac{1}{\lambda_1} =\frac{3 R}{36}}

\mathrm{\lambda _{1}=\frac{12}{R}}\rightarrow (2)

2nd transition line of balmer series,

\mathrm{\frac{1}{\lambda_2} =R\left(\frac{1}{2^2}-\frac{1}{4^2}\right) }

\mathrm{\lambda_2 =\frac{16}{3 R} \rightarrow(3) }

\mathrm{\lambda_1-\lambda_2 =\frac{12}{R}-\frac{16}{3 R} }

\mathrm{a \lambda =\frac{20}{3 R} \text { (Given) } }

from eq (1)

\mathrm{\text { a }\left(\frac{4}{3 R}\right) =\frac{20}{3 R} }

\mathrm{a=5}

The value of \mathrm{a=5}








 

 




 

 

 

 








 

Posted by

vinayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE