Get Answers to all your Questions

header-bg qa

\mathrm{P S Q} is a focal chord of a parabola whose focus is S and vertex is A. P is joined to vertex A and extended to meet the directrix at R. Q is also joined to A and extended to meet the directrix at T. Then, \mathrm{\angle R S T} is equal to

Option: 1

45


Option: 2

60


Option: 3

90


Option: 4

30


Answers (1)

best_answer

Let the parabola be \mathrm{y^2=4 a x}. Let \mathrm{P, Q} be \mathrm{\left(a t_1^2, 2 a t_1\right)}and  \mathrm{\left(a t_2{ }^2, 2 a t_2\right)} respectively.

As \mathrm{P S Q} is a focal chord \mathrm{\Rightarrow t_1 t_2=-1}                     .......(1)

The equation of the directrix is \mathrm{x+a=0.}

Equation of \mathrm{P A} is \mathrm{y=\frac{2 a t_1}{a t_1^2} x \Rightarrow y=\frac{2}{t_1} x}

\mathrm{\therefore \quad Point \, \, R \, \, is \left(-a, \frac{-2 a}{t_1}\right)}
Similarly, point T is \mathrm{\left(-a, \frac{-2 a}{t_2}\right)}

S is (a, 0)

\mathrm{\therefore \quad}  (Slope of ST)( Slope of RS)

\mathrm{=\frac{2 a \backslash t_2}{2 a} \cdot \frac{2 a / t_1}{2 a}=\frac{1}{t_1 t_2}}

                                    \mathrm{=-1 \quad \, \, \, \, \, from (1)}
Hence, \mathrm{\angle T S R=90^{\circ}.}

The answer is (c) 

Posted by

Nehul

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE