Get Answers to all your Questions

header-bg qa

Let A and B are two non-singular square matrices,  A ^T  and  B^T  are the transpose matrices of A and B respectively, then which of the following is correct

Option: 1

B^T AB is symmetric matrix if and only if A is symmetric          


Option: 2

  B^T AB is symmetric matrix if and only if B is symmetric         


Option: 3

  B^T AB is skew symmetric matrix for every matrix A       

        


Option: 4

    B^T AB is skew symmetric matrix if B is skew symmetric


Answers (1)

best_answer

 

Property of Transpose -

\left ( \alpha A \right ){}'= \alpha A{}'

(AB)^{'} =B^{'}A^{'}

- wherein

\alpha being scalar ; A{}' is transpose of A

 

 

Symmetric matrix -

If   A=\left [ a_{ij} \right ]  and  a_{ij}=a_{ji}  for all i and j

- wherein

 

 

Skew symmetric matrix -

If A=\left [ a_{ij} \right ]  and  a_{ij}=-a_{ji}  for all i and j

- wherein

 

 

(B^T AB ) ^ T = B^T A^T ( B^T )^T = B^T A^T B \\\\ = B^T AB

 if  A  is symmetric

           \thereforeB^T AB is symmetric if  A  is symmetric

                  Also  (B^T AB ) ^ T = B^T A^T B = ( - B) A ^ T B

                      \therefore     B^T ABis not skew symmetric if B is skew                   

Posted by

shivangi.bhatnagar

View full answer