# Let A be a $3 \times 3$ matrix with det(A) = 4. Let Ri denote the ith row of A. If a matrix B is obtained by performing the operation $R_2 \rightarrow 2R_2 + 5R_3$ on 2A, then det(B) is equal to : Option: 1 16 Option: 2 80 Option: 3 128 Option: 4 64

$\\\text{Let }A=\begin{vmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{vmatrix}\\2A=\begin{vmatrix} 2R_{11} & 2R_{12} & 2R_{13} \\ 2R_{21} & 2R_{22} & 2R_{23} \\ 2R_{31} & 2R_{32} & 2R_{33} \end{vmatrix}\\\mathrm{R}_{2} \rightarrow 2 \mathrm{R}_{2}+5 \mathrm{R}_{3}$

$\mathrm{B}=\begin{vmatrix} 2 \mathrm{R}_{11} & 2 \mathrm{R}_{12} & 2 \mathrm{R}_{13} \\ 4 \mathrm{R}_{21}+10 \mathrm{R}_{31} & 4 \mathrm{R}_{22}+10 \mathrm{R}_{32} & 4 \mathrm{R}_{23}+10 \mathrm{R}_{33} \\ 2 \mathrm{R}_{31} & 2 \mathrm{R}_{32} & 2 \mathrm{R}_{33} \end{vmatrix}$

$\mathrm{R_2\rightarrow R_2-5R_3}$

$\mathrm{B}=\begin{vmatrix} 2 \mathrm{R}_{11} & 2 \mathrm{R}_{12} & 2 \mathrm{R}_{13} \\ 4 \mathrm{R}_{21} & 4 \mathrm{R}_{22}& 4 \mathrm{R}_{23} \\ 2 \mathrm{R}_{31} & 2 \mathrm{R}_{32} & 2 \mathrm{R}_{33} \end{vmatrix}$

$\\|\mathrm{B}|=2 \times 2 \times 4\left|\begin{array}{lll} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{array}\right| \\ =16 \times 4 \\ =64$

As, |A| = 4 (Given)

## Similar Questions

### Preparation Products

##### Knockout JEE Main April 2021 (One Month)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 14000/- ₹ 4999/-
##### Knockout JEE Main May 2021

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 22999/- ₹ 9999/-
##### Test Series JEE Main May 2021

Unlimited Chapter Wise Tests, Unlimited Subject Wise Tests, Unlimited Full Mock Tests, Get Personalized Performance Analysis Report,.

₹ 6999/- ₹ 2999/-
##### Knockout JEE Main May 2022

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 34999/- ₹ 14999/-