Get Answers to all your Questions

header-bg qa

Let a circle  C_1  be obtained on rolling the circle  x^{2}+y^{2} -4x-6y+11=0  upwards 4 units on the tangent T to it at the point (3,2). Let  C_2  be the image of  C_1  in T. Let A and B be the centers of circles  C_1  and  C_2  respectively, and M and N be respectively the feet of perpendiculars drawn from A and B on the x-axis. Then the area of the trapezium AMNB is :

Option: 1

4(1+\sqrt2)


Option: 2

3+2\sqrt2


Option: 3

2(1+\sqrt2)


Option: 4

2(2+\sqrt2)


Answers (1)

best_answer

(x', y') point lies on line y = x – 1 have distance 4 unit from (3, 2).

\begin{aligned} & x^{\prime}=\frac{4}{\sqrt{2}}+3=2 \sqrt{2}+3 \\ & y^{\prime}=\frac{4}{\sqrt{2}}+2=2 \sqrt{2}+2 \end{aligned}

Slope of line AB is –1.             \text { i.e. }=\tan \theta=-1 \text { then } \sin \theta=\frac{1}{\sqrt{2}}, \cos \theta=-\frac{1}{\sqrt{2}} 

for point A and B 

\begin{aligned} & x= \pm \sqrt{2}\left(\frac{-1}{\sqrt{2}}\right)+(2 \sqrt{2}+3) \\ & y= \pm \sqrt{2}\left(\frac{1}{\sqrt{2}}\right)+(2 \sqrt{2}+2) \end{aligned}

for point A we take +ve sign

(x_2 ,\, y_2)=(2\sqrt2+2,\, \, 2\sqrt2+3)

for point B we take –ve sign

(x_1 ,\, y_1)=(2\sqrt2+4,\, \, 2\sqrt2+1)

MN = \left|x_2-x_1\right|=2 

AM+BN =  2\sqrt2+3+2\sqrt2+1=4+4\sqrt2

area of trapezium      \begin{gathered} =\frac{1}{2} \times 2 \times(4+4 \sqrt{2}) \\ \end{gathered}

                               \begin{gathered} \quad=4(1+\sqrt{2}) \end{gathered}

 

Posted by

rishi.raj

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE