Get Answers to all your Questions

header-bg qa

Let a smooth curve \mathrm{y=f(x)} be such that the slope of the tangent at any point \mathrm{(x, y)} on it is directly proportional to \mathrm{\left(\frac{-y}{x}\right)}. If the curve passes through the points \mathrm{(1,2) \: and\: (8,1)}, then \mathrm{\left|y\left(\frac{1}{8}\right)\right|} is equal to

Option: 1

2\: log_{e}\: 2


Option: 2

4


Option: 3

1


Option: 4

4\: log_{e}\: 2


Answers (1)

best_answer

\mathrm{\frac{d y}{d x} =k\left(-\frac{y}{x}\right)} \\

\mathrm{\Rightarrow \frac{d y}{y} =-k \frac{d x}{x} }\\

\mathrm{\Rightarrow \ln y =-k \ln x+\ln C} \\

\mathrm{\Rightarrow y =c x^{-k}}

\mathrm{(1,2) \Rightarrow 2=c} \\

\mathrm{(8,1) \Rightarrow 1=2 \cdot(8)^{-k}} \\

           \mathrm{\Rightarrow 8^{k}=2} \\

          \mathrm{\Rightarrow k=\frac{1}{3}} \\

\mathrm{\therefore y=2 x^{-\frac{1}{3}}} \\

\mathrm{\left.\therefore \mid y\left(\frac{1}{8}\right)\right)=2 \cdot\left(\frac{1}{8}\right)^{-\frac{1}{3}}=2 \cdot 2=4}

Hence correct option is 2

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE