Get Answers to all your Questions

header-bg qa

Let \mathrm{P\: b} a square matrix such that \mathrm{P}^2=\mathrm{I}-\mathrm{P}. For \alpha, \beta, \gamma, \delta \in \mathrm{N}, if \mathrm{P}^\alpha+\mathrm{P}^\beta=\gamma \mathrm{I}-29 \mathrm{P}$ and $\mathrm{P}^\alpha-\mathrm{P}^\beta=\delta \mathrm{I}-13 \mathrm{P}, then \alpha+\beta+\gamma-\delta is equal to :
 

Option: 1

40

 


Option: 2

22
 


Option: 3

24

 


Option: 4

18


Answers (1)

best_answer

\mathrm{P}^2=\mathrm{I}-\mathrm{P} \\
\mathrm{P}^\alpha+\mathrm{P}^\beta=\gamma \mathrm{I}-29 \mathrm{P} \\
\mathrm{P}^\alpha-\mathrm{P}^\beta=\delta \mathrm{I}-13 \mathrm{P} \\
\mathrm{P}^4=(\mathrm{I}-\mathrm{P})^2=\mathrm{I}+\mathrm{P}^2-2 \mathrm{P} \\
\mathrm{P}^4=\mathrm{I}+\mathrm{I}-\mathrm{P}-2 \mathrm{P}=2 \mathrm{I}-3 \mathrm{P} \\
\mathrm{P}^8=\left(\mathrm{P}^4\right)^2=(2 \mathrm{I}-3 \mathrm{P})^2 \quad=4 \mathrm{I}+9 \mathrm{P}^2-12 \mathrm{P} \\
                                                     \quad=4 \mathrm{I}+9(\mathrm{I}-\mathrm{P})-12 \mathrm{P} \\
                                                    \mathrm{P}^8=13 \mathrm{I}-21 \mathrm{P} \\..........(1)
\mathrm{P}^6=\mathrm{P}^4 \cdot \mathrm{P}^2 \quad=(2 \mathrm{I}-3 \mathrm{P})(\mathrm{I}-\mathrm{P})
                              =2 \mathrm{I}-5 \mathrm{P}+3 \mathrm{P}^2
                              =2 \mathrm{I}-5 \mathrm{P}+3(\mathrm{I}-\mathrm{P})
                              =5 \mathrm{I}-8 \mathrm{P}................................(2)
(1)+(2) \: \: \: \: \: \: \: \: \: \: \: (1)-(2)
\mathrm{P}^8-\mathrm{P}^6=18 \mathrm{I}-29 \mathrm{P}                            \mathrm{P}^8-\mathrm{P}^6=8 \mathrm{I}-13 \mathrm{P}

From (A)

             \begin{gathered} \alpha=8, \quad \beta=6 \\ \gamma=18 \\ \delta=8 \\ \alpha+\beta+\gamma-\delta=32-8=24 \end{gathered}
 

Posted by

SANGALDEEP SINGH

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE