Get Answers to all your Questions

header-bg qa

Let 2\hat{i}+\hat{j}+\hat{k} and \hat{i}-\hat{j}+2\hat{k} are position vectors of two points A & B , then the position vector of a point which divids join of A & B externally in ratio 3:2 will be:

Option: 1

-\hat{i}-5\hat{j}+ 4\hat{k}

 

 

 


Option: 2

\hat{i}+5\hat{j}+ 4\hat{k}


Option: 3

\hat{i}-5\hat{j}+ 4\hat{k}


Option: 4

-\hat{i}+5\hat{j}+ 4\hat{k}


Answers (1)

best_answer

As we learn

Position vector of the point P -

Position\ Vector=\frac{m\vec{b}-n\vec{a}}{m-n}

- wherein

 

 Required position rector is \frac{3(\hat{i}-\hat{j}+2\hat{k})-2(2\hat{i}+\hat{j}+\hat{k})}{3-2}

-\hat{i}-5\hat{j}+4\hat{k}

Posted by

shivangi.shekhar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE