Get Answers to all your Questions

header-bg qa

Let \vec{a},\vec{b},\vec{c},\vec{d}, are four vectors then \begin{bmatrix} \vec{a}+\vec{b} &\vec{c} &\vec{d} \end{bmatrix}+\begin{bmatrix} \vec{c} &\vec{a} &\vec{d} \end{bmatrix}+\begin{bmatrix} \vec{d} &\vec{c} &\vec{b} \end{bmatrix} equals

Option: 1

0


Option: 2

1


Option: 3

2


Option: 4

3


Answers (1)

best_answer

As we learn

Properties of Scalar Triple Product -

\left [ \vec{a}+\vec{b}\vec{c}\vec{d} \right ]

= \left [ \vec{a}\vec{c}\vec{d} \right ]+\left [ \vec{b}\vec{c}\vec{d} \right ]

- wherein

\vec{a}, \vec{b}, \vec{c}, \vec{d} are four vectors.

 

 \left [ \vec{a}+\vec{b}\vec{c}\vec{d} \right ]=\left [ \vec{a}\vec{c}\vec{d} \right ]+\left [ \vec{b}\vec{c}\vec{d} \right ]

\left [ \vec{c}\vec{a}\vec{d}\right ]=-\left [ \vec{a}\vec{c}\vec{d} \right ]

\left [ \vec{d}\vec{c}\vec{b}\right ]=-\left [ \vec{b}\vec{c}\vec{d} \right ]

\therefore \left [ \vec{a}+\vec{b}\ \vec{c}\ \vec{d}\right ]+\left [ \vec{c}\vec{a}\vec{d} \right ]+\left [ \vec{d}\vec{c}\vec{b} \right ]=0

 

Posted by

Ritika Kankaria

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE