Get Answers to all your Questions

header-bg qa

Let \mathrm{f: \mathbf{R} \rightarrow \mathbf{R}} be a differentiable function such that \mathrm{f\left(\frac{\pi}{4}\right)=\sqrt{2}, f\left(\frac{\pi}{2}\right)=0\: and \: \: f^{\prime}\left(\frac{\pi}{2}\right)=1} and let \mathrm{g(x)=\int_{x}^{\pi / 4}\left(f^{\prime}(\mathrm{t})\right.sect \left.+\tan t \operatorname{sect} f(\mathrm{t})\right) dt \: \: for \: \: x \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right).} Then  \lim_{x\rightarrow\left ( \frac{\pi }{2} \right )^{-} }g(x) is equal to:

Option: 1

2


Option: 2

3


Option: 3

4


Option: 4

-3


Answers (1)

best_answer

\mathrm{\text { Since } \frac{d}{d x}(f(x) \sec x)=f^{\prime}(x) \sec x+f(x) \sec x \tan x}

\mathrm{\therefore g(x) =\int_{x}^{\pi / 4}\left(f^{\prime}(t) \sec t+\tan t \cdot \sec t \cdot f(t)\right) d t} \\

              \mathrm{=\left.f(t) \cdot \sec (t)\right|_{x} ^{\pi / 4}}

              \mathrm{=f\left(\frac{\pi}{4}\right) \cdot \sec \left(\frac{\pi}{4}\right)-f(x) \sec (x)} \\

              \mathrm{=\sqrt{2} \cdot \sqrt{2}-f(x) \cdot \sec x} \\

              \mathrm{=2-f(x) \cdot \sec x}

\mathrm{\text { Now } \lim _{x \rightarrow \frac{\pi}{2}^{-}} g(x)=2-\lim _{x \rightarrow \frac{\pi}{2}^{-}} f(x) \cdot \sec x}

\mathrm{=2-\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{f(x)}{\cos x}}

\mathrm{Using\: L'H \: Rule }

\mathrm{=2-\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{f^{\prime}(x)}{-\sin x}}

\mathrm{=2-\frac{f^{\prime}(\pi / 2)}{-1}} \\

\mathrm{=2+1 }\\

\mathrm{=3}

Hence the correct answer is option 2

Posted by

Gunjita

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE