Get Answers to all your Questions

header-bg qa

Let \mathrm{f: \mathbf{R} \rightarrow \mathbf{R}} be a function defined by :

f(x)=\left\{\begin{array}{ccc} \max_{\,\,t \leq x} \left\{\mathrm{t}^{3}-3 \mathrm{t}\right\} & ; & x \leq 2 \\ x^{2}+2 x-6 & ; & 2<x<3 \\ {[x-3]+9} & ; & 3 \leq x \leq 5 \\ 2 x+1 & ; & x>5 \end{array}\right.
where [\mathrm{t}]  is the greatest integer less than or equal to \mathrm{t}. Let \mathrm{m} be the number of points where \mathrm{f} is not differentiable and \mathrm{I}=\int_{-2}^{2} f(x) \mathrm{d} x. Then the ordered pair (\mathrm{m}, \mathrm{I}) is equal to :

Option: 1

\left ( 3,\frac{27}{4} \right )


Option: 2

\left ( 3,\frac{23}{4} \right )


Option: 3

\left ( 4,\frac{27}{4} \right )


Option: 4

\left ( 4,\frac{23}{4} \right )


Answers (1)

best_answer

For  \mathrm{x\leq 2}

\mathrm{\text { Let } g(t)=t^{3}-3 t} \\

\mathrm{g^{\prime}(t)=3 t^{2}-3=3\left(t^{2}-1\right)=3(t+1)(t-1)}

\mathrm{g(-1)=-1+3=2} \\

\mathrm{g(0)=0} \\

\mathrm{g(1)=1-3=-2} \\

\mathrm{g(2)=8-6=2 }

\mathrm{\therefore \max_{t \leqslant x} \left\{t^{3}-3 t\right\} \text { is }}

\therefore Differentiable in this interval

 

For  \mathrm{ 2<x<3} \\

\mathrm{y=x^{2}+2 x-6} \\

\mathrm{A t \: x=2^{+} ; y=4+4-6=2} \\

\mathrm{f^{\prime}(x)=2 x+2 }\\

\mathrm{f^{\prime}\left(2^{+}\right)=4+2=6} \\

\mathrm{\therefore f^{\prime}\left(2^{-}\right) \neq f^{\prime}\left(2^{+}\right)} \\

\mathrm{\therefore \text {Non-differentiable at } x=2} \\

\mathrm{f\left(3^{-}\right)=9+6-6=9} \\

\mathrm{f^{\prime}\left(3^{-}\right)=6+2=8}

 

For  \mathrm{3 \leqslant x \leqslant 5} \\

\mathrm{y=[x-3]+9=[x]-3+9=[x]+6} \\

\mathrm{\text { For } 3 \leq x<4, y=3+6=9}\\

\mathrm{f^{\prime}\left(3^{+}\right)=0 \neq f^{\prime}\left(3^{-}\right)\Rightarrow \mathrm{\text{non-differentiable at x=3}}

 

For 4 \leq x<5, y = 4+6=10

Discontinuous at \mathrm{x=4\Rightarrow non-differentiable\: at\: x=4 }

\mathrm{f^{\prime}\left(5^{-1}\right)=0 }\\

\mathrm{\& f\left(5^{-}\right)=10 }

 

For \mathrm{x> 5 }

\mathrm{f\left(5^{+}\right)=10+1=10}

\therefore Discontinuous and thus non-differentiable at \mathrm{x=5}

\mathrm{\therefore m =4 \quad(x=2,3,4,5)} \\

 

\mathrm{I =\int_{-2}^{2} f(x) d x} \\

\mathrm{=\int_{-2}^{-1}\left(x^{3}-3 x\right) d x+\int_{-1}^{2} 2 d x} \\

\mathrm{=\left.\frac{x^{4}}{4}\right|_{-2} ^{-1}-\left.\frac{3}{2} x^{2}\right|_{-2} ^{-1}+\left.2 x\right|_{-1} ^{2} }

\mathrm{=\frac{1}{4}-4-\frac{3}{2}(1-4)+2(2+1)} \\

\mathrm{=\frac{1}{4}-4+\frac{9}{2}+6} \\

\mathrm{=\frac{1-16+18+24}{4}} \\

\mathrm{=\frac{27}{4}}

Hence answer is option 3

Posted by

shivangi.shekhar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE