Get Answers to all your Questions

header-bg qa

Let \mathrm{P Q} be a focal chord of the parabola \mathrm{y^{2}=4 x}such that it subtends an angle of \mathrm{\frac{\pi}{2}} at the point (3,0). Let the line segment PQ be also a focal chord of the ellipse \mathrm{E}: \frac{x^{2}}{\mathrm{a}^{2}}+\frac{y^{2}}{\mathrm{~b}^{2}}=1, \mathrm{a}^{2}>\mathrm{b}^{2}. If e is the eccentricity of the ellipse \mathrm{\mathrm{E}}, then the value of \mathrm{\frac{1}{\mathrm{e}^{2}}}  is equal to :

Option: 1

1+\sqrt{2}


Option: 2

3+2 \sqrt{2}


Option: 3

1+2 \sqrt{3}


Option: 4

4+5 \sqrt{3}


Answers (1)

best_answer

\mathrm{Slope\: of \: P A=\frac{2 t_{1}}{t_{1}^{2}-3}}\\

\mathrm{Slope\: of\: Q A=\frac{2 t_{2}}{t_{2}^{2}-3}}

Now these are perpendicular

\mathrm{\Rightarrow \quad \frac{2 t_{1}}{t_{1}^{2}-3} \cdot \frac{2 t_{2}}{t_{2}^{2}-3}=-1} \\

\mathrm{\Rightarrow \quad 4 t_{1} t_{2}=-1\left(t_{1}^{2}-3\right)\left(t_{2}^{2}-3\right) }

\mathrm{Using \: t_{1} t_{2}=-1\, for\: focal\: chord}

\mathrm{\Rightarrow-4=-1\left(t_{1}^{2}-3\right)\left(\frac{1}{t_{1}^{2}}-3\right)} \\

\mathrm{\Rightarrow\left(t_{1}^{2}-3\right)\left(\frac{1}{t_{1}^{2}}-3\right)=4} \\

\mathrm{\Rightarrow 1-\frac{3}{t_{1}^{2}}-3 t_{1}^{2}+9=4}

\mathrm{\Rightarrow 3 t_{1}^{2}+\frac{3}{t_{1}^{2}}=6} \\

\mathrm{\Rightarrow 3\left(t_{1}^{2}+\frac{1}{t_{1}^{2}}-2\right)=0} \\

\mathrm{\Rightarrow\left(t_{1}-\frac{1}{t_{1}}\right)^{2}=0} \\

\mathrm{\Rightarrow t_{1}=\frac{1}{t_{1}}} \\

\mathrm{\Rightarrow t_{1}^{2}=1} \\

\mathrm{\Rightarrow t_{1}=1 \text { or }-1}

\mathrm{\therefore P(1,2), Q(1,-2)}

\mathrm{\therefore PQ}  is also the focal chord and latus rectum of ellipse

\mathrm{ P(1,2)} is end point ofn latus rectum

\mathrm{\therefore a e=1\: and\: \frac{b^{2}}{a}=2}\\

\mathrm{a=\frac{1}{e}\: and\: b^{2}=2 a}

\mathrm{\text { Now } e^{2} =1-\frac{b^{2}}{a^{2}}} \\

\mathrm{e^{2} =1-\frac{2 a}{a^{2}} }

\mathrm{e^{2}=1-\frac{2}{a}} \\

\mathrm{e^{2}=1-2 e} \\

\mathrm{e^{2}+2 e-1=0} \\

\mathrm{e=\frac{-2+\sqrt{4+4}}{2}}    ( negative rejected )

\mathrm{=\frac{-2+2 \sqrt{2}}{2} }\\

\mathrm{=\sqrt{2}-1} \\

\mathrm{\therefore \frac{1}{e^{2}} =\frac{1}{(\sqrt{2}-1)^{2}}=\frac{1}{(3-2 \sqrt{2})} \cdot \frac{(3+2 \sqrt{2})}{(3+2 \sqrt{2})}} \\

\mathrm{=3+2 \sqrt{2}}

Hence the correct answer is option 2.

Posted by

mansi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE