Get Answers to all your Questions

header-bg qa

Let f: \mathbf{N} \rightarrow \mathbf{N} be a function such that f(m+n)=f(m)+f(n) for every m, n \in \mathbf{N}$. If $f(6)=18, then f(2) \cdot f(3) is equal to :
Option: 1 54
Option: 2 6
Option: 3 36
Option: 4 18

Answers (1)

best_answer

f(m+n)=f(m)+f(n),f(6)=18\\

Put\; m=n=3;\\

f(6)=f(3)+f(3)=18\\

\Rightarrow f(3)=9\\          ....(1)

Put\; m=4,n=2\\

f(6)=f(4)+f(2)=18\\

Also put m=n=2\\

\Rightarrow f(4)=f(2)+f(2)=2f(2)\\

\Rightarrow f(6)=f(2)+f(2)+f(2)=18\\

\Rightarrow 3f(2)=18\Rightarrow f(2)=6\\     ..........(2)

f(2)\cdot f(3)=9\times6=54

Posted by

Kuldeep Maurya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE