Get Answers to all your Questions

header-bg qa

Let \mathrm{ P(a, b)} be a point on the parabola \mathrm{ y^{2}=8 x} such that the tangent at \mathrm{ P} passes through the centre of the circle \mathrm{ x^{2}+y^{2}-10 x-14 y+65=0.} Let \mathrm{A } be the product of all possible values of \mathrm{a } and \mathrm{B } be the product of all possible values of \mathrm{b. }Then the value of \mathrm{ A+B } is equal to

Option: 1

0


Option: 2

25


Option: 3

40


Option: 4

65


Answers (1)

best_answer

\mathrm{P(a,b)} is point on \mathrm{y^{2}= 8x}, such that tangent at \mathrm{P} pass through centre of

\mathrm{\begin{aligned} x^{2}+y^{2}-10 x-14 y &+65 =0 \end{aligned}}   i.e (5,7)

Tangent at \mathrm{P\left(a t^{2}, 2 a t\right) \text { is ty }=x+a t^{2}}

\mathrm{A= 2 \& \text { it pass through }(5,7)} \\

\mathrm{7 t=5+2 t^{2}} \\

\mathrm{\Rightarrow t=1, t=\frac{5}{2}} \\
\mathrm{\therefore P\left(a t^{2}, 2 a t\right) \Rightarrow(2,4) \text { when } t=1} \\  \mathrm{\&\left(\frac{25}{2}, 10\right) \text { when } t=\frac{5}{2}} \\

\mathrm{\therefore A=2 \times \frac{25}{2}=25} \\

\mathrm{ \therefore A+B=65}

Hence correct option is 4

Posted by

qnaprep

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE