Get Answers to all your Questions

header-bg qa

Let \mathrm{f} be a real valued continuous function on \mathrm{\left [ 0,1 \right ]} and  \mathrm{f(x)=x+\int_{0}^{1}(x-t) f(t) d t} . Then which of the following points \mathrm{(x,y)} lies on the curve \mathrm{y=f(x)} ?

Option: 1

\mathrm{(2,4)}


Option: 2

\mathrm{(1,2)}


Option: 3

\mathrm{(4,17)}


Option: 4

\mathrm{(6,8)}


Answers (1)

best_answer

\mathrm{f(x) =x+x \int_{0}^{1} f(t) d t-\int_{0}^{1} t f(t) d t} \\

        \mathrm{=x+A x-B=(A+1) x-B }\\

\mathrm{\text { where } A =\int_{0}^{1} f(t) d t, B=\int_{0}^{1} t f(t) d t}

\mathrm{A =\int_{0}^{1} f(t) d t} \\

\mathrm{\Rightarrow A =\int_{0}^{1}((A+1) t-B) d t} \\

\mathrm{\Rightarrow A =(A+1) \frac{t^{2}}{2}-\left.B t\right|_{0} ^{1} }

\mathrm{\Rightarrow A=\frac{A+1}{2}-B} \\

\mathrm{\Rightarrow \frac{A}{2}=\frac{1}{2}-B} \\

\mathrm{\Rightarrow A=1-2 B} \\        .....(i)

\mathrm{\text { Also } B=\int_{0}^{1} t f(t) d t}

\mathrm{B=\int_{0}^{1} t((A+1) t-B) d t} \\

\mathrm{B=\int_{0}^{1}\left((A+1) t^{2}-B t\right) d t }\\

\mathrm{B=(A+1) \frac{t^{3}}{3}-\left.\frac{B t^{2}}{2}\right|_{0} ^{1}}

\mathrm{B=\frac{A+1}{3}-\frac{B}{2}} \\

\mathrm{6 B=2 A+2-3 B} \\

\mathrm{9 B=2 A+2}                 .............(ii)

From (i) and (ii)

\mathrm{B =\frac{4}{13}, A=\frac{5}{13}} \\

\mathrm{\therefore \quad f(x) =(A+1) x-B }\\

                  \mathrm{=\frac{18}{13} x-\frac{4}{13}}

Checking option 4 lies on it

Hence answer is option 4

Posted by

shivangi.bhatnagar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE