Get Answers to all your Questions

header-bg qa

Let A be a symmetric matrix such that |A|=2 and \left[\begin{array}{ll}2 & 1 \\ 3 & \frac{3}{2}\end{array}\right] A-\left[\begin{array}{cc}1 & 2 \\ \alpha & \beta\end{array}\right]. If the sum of the diagonal elements of A is s, then  \frac{\beta s}{\alpha^2}  is equal to

Option: 1

5


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

A be a symmetric matrix such that  |\mathrm{A}|=2 \text { and }\left[\begin{array}{ll} 2 & 1 \\ 3 & 3 / 2 \end{array}\right] \mathrm{A}=\left[\begin{array}{ll} 1 & 2 \\ \alpha & \beta \end{array}\right]

A=\left[\begin{array}{ll} a & b \\ b & d \end{array}\right] \, \, \, \, \, \, \, \, \, \quad|A|=a d-b^2=2

\left[\begin{array}{cc} 2 & 1 \\ 3 & 3 / 2 \end{array}\right]\left[\begin{array}{ll} \mathrm{a} & \mathrm{b} \\ \mathrm{b} & \mathrm{d} \end{array}\right]=\left[\begin{array}{ll} 1 & 2 \\ \alpha & \beta \end{array}\right]

\left[\begin{array}{cc} 2 a+b & 2 b+d \\ 3 a+3 / 2 b & 3 b+3 / 2 d \end{array}\right]=\left[\begin{array}{cc} 1 & 2 \\ \alpha & \beta \end{array}\right]

\begin{array}{ll} 2 \mathrm{a}+\mathrm{b}=1 & \, \, \, \, \, 2 \mathrm{~b}+\mathrm{d}=2 \\ \mathrm{~b}=1-2 \mathrm{a} & \, \, \, \, \mathrm{d}=2-2 \mathrm{~b} \\ & \, \, =2-2(1-2 a) \\ & \, \, =2-2+4 a \end{array}

a d-b^2=2

a. 4 a-(1-2 a)^2=2 \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,\, \, \, \, Now \, \alpha=3 a+\frac{3}{2} b

\Rightarrow 4 \mathrm{a}^2-1-4 \mathrm{a}^2+4 \mathrm{a}=2 \, \, \, \, \, \, \, \, \quad=\frac{9}{4}+\frac{3}{2} \cdot\left(\frac{-1}{2}\right)

     4 \mathrm{a}=3 , \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\frac{9-3}{4}=\frac{6}{4}=\frac{3}{2}

\mathrm{a}=\frac{3}{4}

b=1-2 \times \frac{3}{4} \quad \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \beta=3 b+\frac{3}{2} d

=\frac{-1}{2} \quad \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 3 \times\left(\frac{-1}{2}\right)+\frac{3}{2} \times 3

\mathrm{d}=4 \times \frac{3}{4}=3 \quad \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \frac{-3+9}{2}=3                                     

   \begin{aligned} & \mathrm{A}=\left[\begin{array}{cc} 3 / 4 & -1 / 2 \\ -1 / 2 & 3 \end{array}\right] \mathrm{s}=\frac{3}{4}+3=\frac{15}{4} \\ & \frac{\mathrm{Bs}}{\alpha^2}=\frac{3 \times \frac{15}{4}}{\frac{9}{4}}=5 \end{aligned}

 

Posted by

seema garhwal

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE