Get Answers to all your Questions

header-bg qa

Let \mathrm{f:[-1,3] \rightarrow R } be defined as \mathrm{f(x)=\left\{\begin{array}{l}|x|+[x],-1 \leq x<1 \\ x+|x|, 1 \leq x<2 \\ x+[x], 2 \leq x \leq 3\end{array}\right. } where [t] denotes the greatest integer less than or equal to t. Then, f is discontinuous at

 

 

 

Option: 1

 only two points
 


Option: 2

 only three points
 


Option: 3

 four or more points
 


Option: 4

 only one point


Answers (1)

best_answer


\mathrm{\begin{aligned} & \text { Given } f(x)= \begin{cases}|x|+[x], & -1 \leq x<1 \\ x+|x|, & 1 \leq x<2 \\ x+[x], & 2 \leq x \leq 3\end{cases} \\ & =\left\{\begin{array}{ccc} -x-1, & -1 \leq x<0 \\ x, & , \quad 0 \leq x<1 \\ 2 x, & 1 \leq x<2 \\ x+2, & 2 \leq x<3 \\ x+3, & x=3 \end{array}\right. \\ & \end{aligned} }

Thus, f is discontinuous at x=0,1,3.

Posted by

Ritika Jonwal

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE