Get Answers to all your Questions

header-bg qa

Let \mathrm{d} be the distance between the foot of perpendiculars of the points \mathrm{P(1,2,-1) \, and\: Q(2,-1,3)} on the plane \mathrm{-x+y+z=1.} Then \mathrm{d^{2}} is equal to______________.

Option: 1

26


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

\mathrm{P(1,2,-1)}

Let \mathrm{P'(a,b,c)} be its foot of perpendicular

\mathrm{\frac{a-1}{-1} =\frac{b-2}{1}=\frac{c+1}{1}=\frac{-(-1+2-1-1)}{3}=\frac{1}{3}} \\

\mathrm{\Rightarrow a =-\frac{1}{3}+1=\frac{2}{3}} \\

\mathrm{b =2+\frac{1}{3}=\frac{7}{3}} \\

\mathrm{c =\frac{1}{3}-1=-\frac{2}{3}} \\

\mathrm{\therefore P^{\prime}\left(\frac{2}{3}, \frac{7}{3},-\frac{2}{3}\right) }

Let \mathrm{Q'(x,y,z)} be foot of perpendicular of Q

\mathrm{\frac{x-2}{-1}=\frac{y+1}{1}=\frac{z-3}{1}=\frac{-(-2-1+3-1)}{3}=\frac{1}{3} }\\

\mathrm{x=2-\frac{1}{3}=\frac{5}{3}} \\

\mathrm{y=-1+\frac{1}{3}=-\frac{2}{3}}

\mathrm{Z=3+\frac{1}{3} =\frac{10}{3}} \\

\mathrm{Q^{\prime}\left(\frac{5}{3},-\frac{2}{3}, \frac{10}{3}\right) }\\

\mathrm{\therefore d^{2}=P^{\prime} Q^{\prime 2} =\left(\frac{5}{3}-\frac{2}{3}\right)^{2}+\left(-\frac{2}{3}-\frac{7}{3}\right)^{2}+\left(\frac{10}{3}+\frac{2}{3}\right)^{2}} \\

\mathrm{=1+9+16} \\

\mathrm{=26}

Posted by

Ramraj Saini

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE