Get Answers to all your Questions

header-bg qa

Let \mathrm{l_{1}} be the line in xy-plane with x and y intercepts \mathrm{\frac{1}{8}} and \mathrm{\frac{1}{4\sqrt{2}}} respectively, and \mathrm{l_{2}} be the line in zx-plane with x and z intercepts \mathrm{-\frac{1}{8}} and \mathrm{-\frac{1}{6\sqrt{3}}} respectively. If \mathrm{d} is the shortest distance between the line \mathrm{l_{1}\: and \: l_{2}}, then \mathrm{d^{-2}} is equal to ___________.

Option: 1

51


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\mathrm{8 x+4 \sqrt{2} y=1, z=0}\\

\Rightarrow\mathrm{\frac{x-\frac{1}{8}}{1}=\frac{y-0}{-\sqrt{2}}=\frac{z-0}{0}=\lambda}\\

\mathrm{-8 x-6 \sqrt{3} z=1, \quad y=0}\\

\mathrm{\Rightarrow \frac{x+\frac{1}{8}}{3 \sqrt{3}}=\frac{y-0}{0}=\frac{z-0}{-4}}\\

\mathrm{\left|\begin{array}{ccc} \frac{1}{4} & 0 & 0 \\ 1 & -\sqrt{2} & 0 \\ 3 \sqrt{3} & 0 & -4 \end{array}\right|}\\

\mathrm{\Rightarrow\frac{1}{4}\left ( 4\sqrt{2}-0 \right )=\sqrt{2} }\\

\mathrm{d=\frac{1}{\sqrt{51}}}

\mathrm{\frac{1}{d^{2}}=51}

Hence the correct answer is 51

Posted by

manish painkra

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE