Get Answers to all your Questions

header-bg qa

Let \mathrm{Q} be the mirror image of the point \mathrm{P(1,2,1)} with respect to the plane \mathrm{x+2y+2z=16} . Let \mathrm{T} be a plane passing through the point \mathrm{Q} and contains the line \vec{r}=-\hat{k}+\lambda(\hat{i}+\hat{j}+2 \hat{k}), \lambda \in \mathbb{R} . Then, which of the following points lies on \mathrm{T}

Option: 1

(2,1,0)


Option: 2

(1,2,1)


Option: 3

(1,2,2)


Option: 4

(1,3,2)


Answers (1)

best_answer

Let coordinate of \mathrm{Q} in \mathrm{x+2 y+2 z=16} be \mathrm{\left(x_{1}, y_{1}, z_{1}\right)}

\mathrm{\therefore \frac{x_{1}-1}{1}=\frac{y_{1}-2}{2}=\frac{z_{1}-1}{2}=\frac{-2(1+4+2-16)}{1+2^{2}+2^{2}}} \\

\mathrm{\Rightarrow \frac{x_{1}-1}{1}=\frac{y_{1}-2}{2}=\frac{z_{1}-1}{2}=2} \\

\mathrm{\Rightarrow x_{1}=3, \quad y_{1}=6,\quad z_{1}=5 }

Vector \vec{b} parallel to given line is \mathrm{i+j+2 k}

\mathrm{R(0,0,-1)} lies on line, so  \mathrm{\overrightarrow{R Q}} is also parallel to plane

\mathrm{\overrightarrow{R Q}=3 i+6 j+6 k}

\mathrm{\overrightarrow{n}} of plane \mathrm{=(i+j+2 k) \times(3 i+6 j+6 k)}

                 \mathrm{=\left|\begin{array}{ccc} i & j & k \\ 1 & 1 & 2 \\ 3 & 6 & 6 \end{array}\right|} \\

                 \mathrm{=-6 i-j(0)+k(3)} \\

                 \mathrm{=-6 i+3 k}

Equation of plane

\mathrm{-6(x-0)+3(z+1)=0} \\

\mathrm{\Rightarrow -6 x+3 z+3=0} \\

\mathrm{\Rightarrow -2 x+z+1=0}

Checking options,option 2 lies on this plane

Hence answer is option 2 

Posted by

Gautam harsolia

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE