Get Answers to all your Questions

header-bg qa

Let a_{n} be the nth term of a G.P. of positive terms. If \sum_{n=1}^{100}a_{2n+1}=200\: \: and\: \: \sum_{n=1}^{100}a_{2n}=100,\: \: then\: \sum_{n=1}^{200}a_n is equal to :   
Option: 1 300
Option: 2 175
Option: 3 225
Option: 4 150
 

Answers (5)

best_answer

Sum of n-term of a GP

Let Sn be the sum of n terms of the G.P. with the first term ‘a’ and common ratio ‘r’. Then 

S_n=a(\frac{1-r^n}{1-r})

The above formula does not hold for r = 1, For r = 1 the sum of n terms of the G.P. is S_n = na.

 

Now,

\\\sum_{n=1}^{100} a_{2 n+1}=a_{3}+a_{5}+\ldots \ldots a_{201}=200 \Rightarrow \frac{\operatorname{ar}^{2}\left(r^{200}-1\right)}{r^{2}-1}=200\\\sum_{n=1}^{100} a_{2 n}=a_{2}+a_{4}+\ldots \ldots . a_{200}=100=\frac{\operatorname{ar}\left(r^{200}-1\right)}{r^{2}-1}=100

On dividing above equations, r = 2

Adding both equations,

\\\Rightarrow \mathrm{a}_{2}+\mathrm{a}_{3}+\ldots \ldots \ldots \ldots \mathrm{a}_{200}+\mathrm{a}_{201}=300\\\Rightarrow r\left(a_{1}+\ldots \ldots \ldots \ldots a_{200}\right)=300\\\sum_{n=1}^{200} a_{n}=\frac{300}{r}=150

Correct Option 4

Posted by

avinash.dongre

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

225

Posted by

Anakha

View full answer

150

Posted by

L.venkateswarlu Laddagiri

View full answer

225

Harshita Mangal

Posted by

Rohit Mangal

View full answer

150

Posted by

Nalla mahalakshmi

View full answer