Get Answers to all your Questions

header-bg qa

Let \mathrm{P} be the plane containing the traight line \mathrm{\frac{x-3}{9}=\frac{y+4}{-1}=\frac{z-7}{-5}} and perpendicular  to the plane containing the straight lines   \mathrm{\frac{x}{2}=\frac{y}{3}=\frac{z}{5} \text { and } \frac{x}{3}=\frac{y}{7}=\frac{z}{8}} . If \mathrm{d} is thed distance of \mathrm{P} from the point \mathrm{(2,-5,11)}, then \mathrm{d^{2}} is equal to :

Option: 1

\frac{147}{2}


Option: 2

96


Option: 3

\frac{32}{3}


Option: 4

54


Answers (1)

best_answer

\mathrm{a(x-3)+b(y+4)+c(z-7)=0} \\

\mathrm{p: 9 a-b-5 c=0} \\

\mathrm{-11 a-b+5 c=0}

After solving DR's  \mathrm{\alpha(1,-1,2)}

Equation of plane

\mathrm{x-y+2 z=21} \\

\mathrm{d=\frac{8}{\sqrt{6}}} \\

\mathrm{d^{2}=\frac{32}{3}}

Hence correct option is 3

Posted by

Gunjita

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE