Get Answers to all your Questions

header-bg qa

Let \mathrm{A,B,C} be three points whose position vectors respectively are

\begin{aligned} &\vec{a}=\hat{i}+4 \hat{j}+3 \hat{k} \\ &\vec{b}=2 \hat{i}+\alpha \hat{j}+4 \hat{k}, \alpha \in \mathbb{R} \\ &\vec{c}=3 \hat{i}-2 \hat{j}+5 \hat{k} \end{aligned}

If \mathrm{\alpha } is the smallest positive integer for which \mathrm{ } \vec{a},\mathrm{ } \vec{b},\mathrm{ } \vec{c} are non-collinear, then the length of the median in \mathrm{\Delta ABC }, through \mathrm{A } is:

Option: 1

\frac{\sqrt{82}}{2}


Option: 2

\frac{\sqrt{62}}{2}


Option: 3

\frac{\sqrt{69}}{2}


Option: 4

\frac{\sqrt{66}}{2}


Answers (1)

best_answer

\mathrm{Let\: A(i+4 j+3 k), B(2 i+\alpha j+4 k) \: and \: C(3 i-2 j+5 k)}

If \mathrm{A,B\: and \: C} are collinear, then

\mathrm{ \overrightarrow{A C}=\lambda(\overrightarrow{B C}) \quad \text { for any } \lambda \in R} \\

\mathrm{\Rightarrow (2 i-6 j+2 k)=\lambda(i+(-2-\alpha) j+k)} \\

\mathrm{\Rightarrow 2=\lambda,-6=\lambda(-2-\alpha), \quad 2=\lambda} \\

\mathrm{\Rightarrow -6=2(-2-\alpha) }

\mathrm{\Rightarrow -3=-2-\alpha} \\

\Rightarrow \alpha = 1

\therefore For \mathrm{\alpha \neq 1, A, B,C} are non-collinear

Smallest positive integral \mathrm{\alpha =2}

\mathrm{D} using mid-point formula is

\mathrm{\left(\frac{5}{2}, 0, \frac{9}{2}\right)} \\

\mathrm{A D =\sqrt{\left(\frac{5}{2}-1\right)^{2}+(0-4)^{2}+\left(\frac{9}{2}-3\right)^{2}}} \\

\mathrm{=\sqrt{\frac{9}{4}+16+\frac{9}{4}}} \\

\mathrm{=\sqrt{\frac{9+64+9}{4}} }

\mathrm{={\frac{\sqrt{82}}{2}}

Hence answer is option 1

Posted by

himanshu.meshram

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE